
January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801164 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 820

MEMORY SHARING & UTILIZATION AMONG

MULTIPLE PROCESSING UNITS TO IMPROVE

THE PERFORMANCE OF ATPG PROCESS

THROUGH HDL

Mr. A.CHAKRADHAR
1
 , Mrs.A.KARUNA SRI

2

1. Associate Professor, Department of ECE ,Jayamukhi Institute of Technogical Sciences , Warangal, India

2. Department of ECE, Jayamukhi Institute of Technological Sciences, Warangal, India.

Abstract:A new test generation methodology is proposedthat takes advantage of shared memory multi-core

systems. Appropriateparallelization of the main steps of ATPG allocatesresources in order to minimize

workload duplication and multithreadingrace contention, often encountered in parallel implementations.Recent

works on ATPG parallelization for on-chip multicoreenvironments exploit a variety and, often mixture, of

parallelism dimensions such as fault parallelism, structural (circuit) parallelism, and algorithmic (including

search-space) parallelism. Moreover, the goal of utilizing parallelism often varies.The proposed approach

ensures that the obtainedacceleration grows linearly with the number of processing coresand, at the same time,

keeps the test set size close to that obtainedby serial ATPG. The experimental results demonstrate that

theproposed methodology achieves higher degree of speed-up thancomparable state-of-the-art multi-core based

tools, while maintainssimilar test set sizes.

 Keywords—ATPG; Parallel Processing; Multi-core systems

Introduction
Generation of test patterns for combinational logic

is a search through the set of all input values to find

one that causes the output of a good circuit to differ

from that of one containing a fault. Much research

has gone into increasing the efficiency of

algorithms for ATPG. However, the overall gains

achieved through these improvements have not kept

pace with increasing circuit size, and computation

times are still excessive. This report surveys

techniques now being explored to map the ATPG to

parallel processing machines. As the size and

complexity of IC’s continue to grow, the need for

fast and effective testing methods for these devices

becomes even more important. A significant portion

of design time for IC’s and digital systems in

general, is spent in generating test patterns that

distinguish a faulty IC from a fault free one. In

order to keep defective products from reaching the

market, manufacturers must be able to test their

product in an efficient and cost effective manner.

Technology shrinking in the integrated circuit

manufacturing process allowed the implementation

of multiple processing units

(cores) on a single chip as well as large amounts of

on chip memory.

Figure 1: Components of ATPG.

These developments offer extensive processing

power that can be used in various computationally

intensive problems including popular electronic

design automation processes. However, the

distributed fashion of this processing power guides

towards the development of parallel methodologies

that scale well as the number of cores per chip are

expected to increase beyond two dozens to

hundreds. Automatic Test Pattern Generation

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801164 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 821

(ATPG), a well-known NP-hard problem, becomes

more demanding as devices under test are becoming

larger and more complicated and as emerging

defects require new fault models of higher

complexity.

As a means to increase the testability of the

circuits and also to reduce the Automatic Test

Pattern Generation (ATPG) complexity, Design-

For-Test (DFT) methods are employed. Two main

parameters that determine the testability of a circuit

are the controllability and observability of its

signals. Controllability of a signal refers to its

ability or ease to be set to a particular logic value

from the primary inputs of the circuit. Observability

of a signal refers to its ability or ease to be observed

at one of the primary outputs of the circuit.

Automatic Test Pattern Generation (ATPG),

a well-knownNP-hard problem, becomes more

demanding as devices undertest are becoming larger

and more complicated and as emerging defects

require new fault models of higher complexity.

While previously proposed procedures are

very effective, among many others, they are

inherently non-parallel and thus, cannot rely on

automatic parallelization using sophisticated

compilers. Proper problem decomposition,

workload distribution and final test set re-

composition are essential to guarantee the quality of

the results while maintaining fault coverage. Since,

typically, each core does not consider the entire

search space, parallel approach tend to choose local

optimal solutions resulting in test set Increase,

known as the test inflation problem. Parallel ATPG

has been studied before the on-chip multi core era,

by either applying bit level parallelism or

distributing ATPG components among multiple

processing units, not physically on the same chip.

These approaches were designed to avoid/minimize

communication overhead and were constrained by

the machine’s word size.

Parallelization speed-up rates and test set

inflation are investigated in the recent work of

which also considers ashared memory architecture

model. Shared memory is utilizedas an extremely

low latency communication mean with highcapacity

to leverage synchronization and communication

ofthe process.

Test generation process
Testing digital circuits must include the two

classes of digital circuits: combinational and

sequential. For combinational logic circuits, only

one test vector sequence is required for stuck-at

fault detection. Sequential circuits inherently

require the application of a series of test vector

sequences for the detection of a fault. Hence,

combinational testing is a subset of the sequential

test problem. Most sequential test algorithms map

the generation of test sequences to iterative

combinational test methods. Some techniques allow

for the conversion of sequential circuits to

combinational circuits for the purpose of testing.

This conversion reduces the complexity of test

generation for a sequential circuit to that of

combinational logic. Therefore, efficient

combinational test algorithms are needed to reduce

the time spent in test.

Test generation can be achieved either by

deterministic test pattern generation or by statistical

test pattern generation. Deterministic test pattern

generation uses a specific algorithm to generate a

test for every fault in a circuit, if a test exists.

Statistical test pattern generation randomly selects

test vectors, and using fault simulation, determines

which faults are detected.

This statistical method can quickly find tests

for the easy-to-detect faults, but becomes

significantly less efficient when only the hard-to-

detect faults remain. Deterministic test pattern

generation uses one of numerous Automatic Test

Pattern Generation (ATPG) algorithms. ATPG

algorithms provide a mechanism to generate a test

vector for a specific fault, and fault simulation

algorithms are available which can determine if any

additional faults are covered by a given vector. As a

result, it is now possible to test large circuits within

a reasonable period of time

In addition to using algorithmic techniques

to improve the efficiency of ATPG, parallel

processing environments can be utilized to reduce

computation time. There are several methods

available to parallelize ATPG. These methods

include fault partitioning, heuristic parallelization,

search space partitioning, algorithmic partitioning,

and topological partitioning of these methods, the

simplest toimplement is fault partitioning, which

divides the fault list across various processors. It is

this method of parallelization that is the basis of this

investigation.

A common parallelization procedure consists of

three steps:(i) decomposition (domain or

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801164 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 822

functional), (ii) parallel execution,and (iii) final

result assembly. Step (ii) can result in

significantcompromise of the quality of the

obtained results and,at the same time, not offer the

expected speed-up. An efficientparallel algorithm

should effectively overcome challengessuch as

memory contention and imbalanced workload

distribution. The proposed ATPG method

appropriately designs allthree steps to ensure that

these challenges are treated efficiently.

Fig.2.Test generation process

The proposed ATPG method appropriately

designs allthree steps to ensure that these challenges

are treated efficiently.Specifically, two conceptual

approaches are adopted: (i)problem partitioning to

avoid executing the same work concurrentlyin

different cores and (ii) fine-grained granularity

ofeach step to provide dynamic distribution of

work. Variousparallel optimization heuristics based

on this concept.

The methodology takes advantageof fast and

low cost shared memory communication inherentin

the underlying architecture in order to coordinate

the mainsteps of the ATPG to avoid redundant work

and dynamicallyallocate the workload while

minimizing memory contentioncaused by multiple

cores (threads) when accessing shared data.A test

generation flow is proposed in which hard-to-

detectfaults are targeted first, followed by a parallel

fault simulationbasedmerging process to maximize

fault coverage. This processemploys a series of

newly proposed parallelization heuristicsto

explicitly avoid simultaneous consideration of

thesame faults by two or more cores, in order to

minimize extrawork and thread idle time. Any

remaining undetected faultsare targeted during a

following phase, in a similar manner.The obtained

experimental results demonstrate the

effectivenessof the proposed approach in speeding-

up the ATPG process.

Shared Memory Architecture

There are two types of parallel processing

architectures.

• Shared Memory Architecture

• Message Passing Architecture.

These two differ in their memory

organization, resulting in different speed and

communication. Programs written for one type of

architecture might not perform well when executed

on the other architecture.

Shared Memory Systems: Shared memory

systems have single global memory which can be

accessed by all processors. Processors have their

own caches but the address space is the same. A

major characteristic of most shared memory

systems is that access to data is independent of the

processor making the request and is relatively fast,

almost as fast as typical memory access times in a

uniprocessor system. However, when many

processors are making simultaneous requests to a

single memory location or bank, and memory

access becomes a bottleneck, access times can

increase greatly. For this reason, physical memory

layout and data organization within the memory are

critical to ensure that the memory system can

handle as many simultaneous requests as possible.

Figure 3:Shared Memory

andDistributedMemory system architectures.

Parallelization methodology and

optimizations:
A. Test-Epoch Parallelization:

Fig.4 presents a flowchart illustrating the basic

steps of the parallel Test Generation (TG)

methodology followed during a test epoch, namely

seed-based TG and dynamic test mergingand

restricted TG. An epoch explicitly targets on a

fault-byfaultbasis, only a small subset of the fault

list F (FH forEpoch I and FR for Epoch II). Note

that FC = F – (FH ∪ FR)typically constitutes the

overwhelming majority of the faultswhich are easily

detectable in an implicit manner (i.e., viafault

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801164 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 823

simulation). The faults in a fault list are sorted

based onstructural similarities of fault locations (net

list), in order toincrease the probability of

proximate faults to be detected bythe same test.

Fig.4. A test epoch targeting hard-to-detect

faults (Epoch I).

B. Parallelization Optimizations
Detection-based Primary Test Selection. In the

merging step of Fig.5, test selection is very

important for the efficientevolution of merging

since it sets the constraints and outcomesof

consequent merging iterations, restricted TG, and

faultsimulation. Practice in ATPG suggests that

early faultdropping plays a more important role

than having fewerconstraints (more unspecified

bits) in the test seed. For thisreason, the primary

test ti during dynamic merging (mergingseed) is

selected based on its number of detected faults in

di.Recall that the fault simulation process

performed at the endof the first step of the test

epoch.

Fig.5. Dynamic Test merging and Restricted TG

processes per core

Test Set Private Consideration.

The search for the best candidate tests to be

merged (either the primary or the ones tofollow)

involves high interaction of each core with the

shared memory. Specifically, selecting the primary

test, as well as computing the pair-wise

compatibilities with the remaining tests in TPF,

inherently involves memory contention since all

cores are searching TPF. This issue is addressed by

dynamically partitioning TPF in n private subsets

(n being then number of available cores), one for

each core. Each core can only select tests from its

own private subset of TPF (and the corresponding

DPF) which can be safely moved to its own private

cache. This implicitly minimizes concurrent

memoryaccess requests from different cores that

can result ininefficient memory utilization due to

memory contention. Moreover, it implicitly

minimizes duplication of work as each core

considers a distinct part in TPF. When a core

finishes with themerging process within its private

part of TPF, it is allowed to work on the entire set

in order to ensure workloadbalancing by avoiding

idle periods in cores. At this point, concurrent

memory accesses can occur, however, their impact

is minimal as the bulk of the merging process has

alreadyoccurred during the private consideration,

and, hence, the size of TPF is by this point

significantly reduced.

Test Provisional Marking

During compatibility merging, the list Pi which

holds pair-wise compatibilities between

testsrequires updating after each merging. This

updating is highly demanding in processing

resources as it is of cubic complexity in the worst

case. To avoid this issue the proposed methodology

calculates and ranks compatibilities only once for

each test ti. If a test tj is selected to be merged with

ti, it is provisionally marked in TPF so that it is not

merged in anothercore, explicitlyavoiding imposing

unnecessary constraints inanother thread that

performsmerging. If compatibility between ti and a

test tj in Pi is invalidated by a previous merging,

merging between ti and tj is not completed and

theprovisional marking is cleared. Otherwise,

provisional marking indicates permanent discarding

of tj from TPF.

Balanced Workload Distribution:

Distribution of workload to the available

cores can significantly impact the speed-up of a

parallel methodology. Test generation and fault

simulation processes have unpredictable execution

times due to the nature of the problems and fault

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801164 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 824

dropping. Core idle time is minimized by

dynamically selecting:’

 (i)The next fault to be targeted in seed-based test

generation in each epoch.

 (ii) The next test to be used as primary in test

merging.

 (iii) The tests to be merged with the primary test

seed, and

 (iv) The next fault to be targeted in restricted TG

based on necessary assignments. Since, data is

stored in shared memory (fault list and test seeds),

and thus, is easily accessible by all cores, provides a

punctual way ofdetermining how the workload will

be selected at each stepand by each optimization

mechanism of the approximation.

Simulation results

Fig.6.Simulated output

Fig.7.RTL schematic of proposed method

Fig.8.Technology schematic of proposed method

CONCLUSION

Proposed a parallel test pattern methodology

for shared memory multi-core environments. A

number of newly proposed heuristics attempt to

avoid assigning the same workload to multiple

cores, while the distribution of work in the available

resources to minimize core idle time. Experimental

results demonstrate high speed-up rates that keep

increasing as the number of the available cores

increases. Test set size increase is limited and

comparable to other state-of-the-art parallel

approaches.

REFERENCES
[1] K. Scheibler, D. Erb and B. Becker, "Improving

test patterngeneration in presence of unknown

values beyond restricted symbolic logic," in Proc.

of ETS, pp. 1-6, 2015

[2] S. Eggersglub, K. Schmitz, R. Krenz-Baath and

R. Drechsler, "Optimization-based multiple target

test generation for highly compacted test sets," in

Proc. of ETS, pp. 1-6, 2014.

[3] I. Pomeranz, "Generation of compact multi-

cycle diagnostic test sets," in Proc. of ETS, pp. 1-1,

2013.

[4] S.Patil and P.Banerjee, “Fault partitioning issues

in an integrated parallel test generation/fault

simulation environment,” in Proc. of ITC, pp. 718–

726, 1989.

[5] J. Wolf, L. Kaufman, R. Klenke, J. H. Aylor,

and R. Waxman, “An analysis of fault partitioned

parallel test generation,” IEEETrans. on CAD, vol.

15, no. 5, pp. 517–534, 1996.

[6] A. Czutro, I. Polian, M. Lewis, P. Engelke, S.

M. Reddy and B. Becker, "Thread-parallel

integrated test pattern generator utilizing

satisfiability analysis," International Journal

January 2018, Volume 5, Issue 1 JETIR (ISSN-2349-5162)

JETIR1801164 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 825

ofParallel Programming, vol. 38, pp. 185-202,

2010.

[7] K-Y. Liao, C-Y. Chang and JC-M Li "A parallel

test pattern generation algorithm to meet multiple

quality objectives," IEEETrans. on CAD, vol.30,

no. 11, pp. 1767-1772, 2011.

[8] K.-W. Yeh, M.-F. Wu and J.-L. Huang, “A low

communication overhead and load balanced parallel

ATPG with improved static fault partition method,”

in Proc. of Intl. Conf. on Algorithmsand

Architectures for Parallel Processing, pp. 362-371,

2009.

[9] JC-Y. Ku, RH-M. Huang, LY-Z. Lin and CH-P.

Wen,"Suppressing test inflation in shared-memory

parallel Automatic Test Pattern Generation," in

Proc. of ASP-DAC, pp.664-669, 2014.

[10] K-W. Yeh, J-L. Huang, H-J. Chao and L-T.

Wang "A circular pipeline processing based

deterministic parallel test patterngenerator," in Proc.

of ITC, pp. 1-8, 2013.

[11] X. Cai, P. Wohl, J.A. Waicukauski and P.

Notiyath "Highly efficient parallel ATPG based on

shared memory," in Proc. OfITC, pp. 1-7, 2010.

