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Abstract:A new test generation methodology is proposedthat takes advantage of shared memory multi-core 

systems. Appropriateparallelization of the main steps of ATPG allocatesresources in order to minimize 

workload duplication and multithreadingrace contention, often encountered in parallel implementations.Recent 

works on ATPG parallelization for on-chip multicoreenvironments exploit a variety and, often mixture, of 

parallelism dimensions such as fault parallelism, structural (circuit) parallelism, and algorithmic (including 

search-space) parallelism. Moreover, the goal of utilizing parallelism often varies.The proposed approach 

ensures that the obtainedacceleration grows linearly with the number of processing coresand, at the same time, 

keeps the test set size close to that obtainedby serial ATPG. The experimental results demonstrate that 

theproposed methodology achieves higher degree of speed-up thancomparable state-of-the-art multi-core based 

tools, while maintainssimilar test set sizes. 
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Introduction 
Generation of test patterns for combinational logic 

is a search through the set of all input values to find 

one that causes the output of a good circuit to differ 

from that of one containing a fault. Much research 

has gone into increasing the efficiency of 

algorithms for ATPG. However, the overall gains 

achieved through these improvements have not kept 

pace with increasing circuit size, and computation 

times are still excessive. This report surveys 

techniques now being explored to map the ATPG to 

parallel processing machines. As the size and 

complexity of IC’s continue to grow, the need for 

fast and effective testing methods for these devices 

becomes even more important. A significant portion 

of design time for IC’s and digital systems in 

general, is spent in generating test patterns that 

distinguish a faulty IC from a fault free one. In 

order to keep defective products from reaching the 

market, manufacturers must be able to test their 

product in an efficient and cost effective manner. 

Technology shrinking in the integrated circuit 

manufacturing process allowed the implementation 

of multiple processing units  

 

 

(cores) on a single chip as well as large amounts of 

on chip memory. 

 

 
Figure 1: Components of ATPG. 

These developments offer extensive processing 

power that can be used in various computationally 

intensive problems including popular electronic 

design automation processes. However, the 

distributed fashion of this processing power guides 

towards the development of parallel methodologies 

that scale well as the number of cores per chip are 

expected to increase beyond two dozens to 

hundreds. Automatic Test Pattern Generation 
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(ATPG), a well-known NP-hard problem, becomes 

more demanding as devices under test are becoming 

larger and more complicated and as emerging 

defects require new fault models of higher 

complexity.  

As a means to increase the testability of the 

circuits and also to reduce the Automatic Test 

Pattern Generation (ATPG) complexity, Design-

For-Test (DFT) methods are employed. Two main 

parameters that determine the testability of a circuit 

are the controllability and observability of its 

signals. Controllability of a signal refers to its 

ability or ease to be set to a particular logic value 

from the primary inputs of the circuit. Observability 

of a signal refers to its ability or ease to be observed 

at one of the primary outputs of the circuit. 

Automatic Test Pattern Generation (ATPG), 

a well-knownNP-hard problem, becomes more 

demanding as devices undertest are becoming larger 

and more complicated and as emerging defects 

require new fault models of higher complexity. 

While previously proposed procedures are 

very effective, among many others, they are 

inherently non-parallel and thus, cannot rely on 

automatic parallelization using sophisticated 

compilers. Proper problem decomposition, 

workload distribution and final test set re-

composition are essential to guarantee the quality of 

the results while maintaining fault coverage. Since, 

typically, each core does not consider the entire 

search space, parallel approach  tend to choose local 

optimal solutions resulting in test set Increase, 

known as the test inflation problem. Parallel ATPG 

has been studied before the on-chip multi core era, 

by either applying bit level parallelism or 

distributing ATPG components among multiple 

processing units, not physically on the same chip. 

These approaches were designed to avoid/minimize 

communication overhead and were constrained by 

the machine’s word size.  

Parallelization speed-up rates and test set 

inflation are investigated in the recent work of 

which also considers ashared memory architecture 

model. Shared memory is utilizedas an extremely 

low latency communication mean with highcapacity 

to leverage synchronization and communication 

ofthe process. 

Test generation process 
Testing digital circuits must include the two 

classes of digital circuits: combinational and 

sequential. For combinational logic circuits, only 

one test vector sequence is required for stuck-at 

fault detection. Sequential circuits inherently 

require the application of a series of test vector 

sequences for the detection of a fault. Hence, 

combinational testing is a subset of the sequential 

test problem. Most sequential test algorithms map 

the generation of test sequences to iterative 

combinational test methods. Some techniques allow 

for the conversion of sequential circuits to 

combinational circuits for the purpose of testing. 

This conversion reduces the complexity of test 

generation for a sequential circuit to that of 

combinational logic. Therefore, efficient 

combinational test algorithms are needed to reduce 

the time spent in test. 

Test generation can be achieved either by 

deterministic test pattern generation or by statistical 

test pattern generation. Deterministic test pattern 

generation uses a specific algorithm to generate a 

test for every fault in a circuit, if a test exists. 

Statistical test pattern generation randomly selects 

test vectors, and using fault simulation, determines 

which faults are detected.  

This statistical method can quickly find tests 

for the easy-to-detect faults, but becomes 

significantly less efficient when only the hard-to-

detect faults remain. Deterministic test pattern 

generation uses one of numerous Automatic Test 

Pattern Generation (ATPG) algorithms. ATPG 

algorithms provide a mechanism to generate a test 

vector for a specific fault, and fault simulation 

algorithms are available which can determine if any 

additional faults are covered by a given vector. As a 

result, it is now possible to test large circuits within 

a reasonable period of time 

In addition to using algorithmic techniques 

to improve the efficiency of ATPG, parallel 

processing environments can be utilized to reduce 

computation time. There are several methods 

available to parallelize ATPG. These methods 

include fault partitioning, heuristic parallelization, 

search space partitioning, algorithmic partitioning, 

and topological partitioning of these methods, the 

simplest toimplement is fault partitioning, which 

divides the fault list across various processors. It is 

this method of parallelization that is the basis of this 

investigation. 

A common parallelization procedure consists of 

three steps:(i) decomposition (domain or 
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functional), (ii) parallel execution,and (iii) final 

result assembly. Step (ii) can result in 

significantcompromise of the quality of the 

obtained results and,at the same time, not offer the 

expected speed-up. An efficientparallel algorithm 

should effectively overcome challengessuch as 

memory contention and imbalanced workload 

distribution. The proposed ATPG method 

appropriately designs allthree steps to ensure that 

these challenges are treated efficiently. 

 

 
Fig.2.Test generation process 

The proposed ATPG method appropriately 

designs allthree steps to ensure that these challenges 

are treated efficiently.Specifically, two conceptual 

approaches are adopted: (i)problem partitioning to 

avoid executing the same work concurrentlyin 

different cores and (ii) fine-grained granularity 

ofeach step to provide dynamic distribution of 

work. Variousparallel optimization heuristics based 

on this concept. 

The methodology takes advantageof fast and 

low cost shared memory communication inherentin 

the underlying architecture in order to coordinate 

the mainsteps of the ATPG to avoid redundant work 

and dynamicallyallocate the workload while 

minimizing memory contentioncaused by multiple 

cores (threads) when accessing shared data.A test 

generation flow is proposed in which hard-to-

detectfaults are targeted first, followed by a parallel 

fault simulationbasedmerging process to maximize 

fault coverage. This processemploys a series of 

newly proposed parallelization heuristicsto 

explicitly avoid simultaneous consideration of 

thesame faults by two or more cores, in order to 

minimize extrawork and thread idle time. Any 

remaining undetected faultsare targeted during a 

following phase, in a similar manner.The obtained 

experimental results demonstrate the 

effectivenessof the proposed approach in speeding-

up the ATPG process. 

Shared Memory Architecture 

There are two types of parallel processing 

architectures.  

• Shared Memory Architecture  

• Message Passing Architecture.  

These two differ in their memory 

organization, resulting in different speed and 

communication. Programs written for one type of 

architecture might not perform well when executed 

on the other architecture. 

Shared Memory Systems: Shared memory 

systems have single global memory which can be 

accessed by all processors. Processors have their 

own caches but the address space is the same. A 

major characteristic of most shared memory 

systems is that access to data is independent of the 

processor making the request and is relatively fast, 

almost as fast as typical memory access times in a 

uniprocessor system. However, when many 

processors are making simultaneous requests to a 

single memory location or bank, and memory 

access becomes a bottleneck, access times can 

increase greatly. For this reason, physical memory 

layout and data organization within the memory are 

critical to ensure that the memory system can 

handle as many simultaneous requests as possible.

 
Figure 3:Shared Memory 

andDistributedMemory system architectures. 

Parallelization methodology and 

optimizations: 
A. Test-Epoch Parallelization: 

Fig.4 presents a flowchart illustrating the basic 

steps of the parallel Test Generation (TG) 

methodology followed during a test epoch, namely 

seed-based TG and dynamic test mergingand 

restricted TG. An epoch explicitly targets on a 

fault-byfaultbasis, only a small subset of the fault 

list F (FH forEpoch I and FR for Epoch II). Note 

that FC = F – (FH ∪  FR)typically constitutes the 

overwhelming majority of the faultswhich are easily 

detectable in an implicit manner (i.e., viafault 
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simulation). The faults in a fault list are sorted 

based onstructural similarities of fault locations (net 

list), in order toincrease the probability of 

proximate faults to be detected bythe same test. 

 
Fig.4. A test epoch targeting hard-to-detect 

faults (Epoch I). 

B. Parallelization Optimizations 
Detection-based Primary Test Selection. In the 

merging step of Fig.5, test selection is very 

important for the efficientevolution of merging 

since it sets the constraints and outcomesof 

consequent merging iterations, restricted TG, and 

faultsimulation. Practice in ATPG suggests that 

early faultdropping plays a more important role 

than having fewerconstraints (more unspecified 

bits) in the test seed. For thisreason, the primary 

test ti during dynamic merging (mergingseed) is 

selected based on its number of detected faults in 

di.Recall that the fault simulation process 

performed at the endof the first step of the test 

epoch. 

 
Fig.5. Dynamic Test merging and Restricted TG 

processes per core 

 

Test Set Private Consideration. 

The search for the best candidate tests to be 

merged (either the primary or the ones tofollow) 

involves high interaction of each core with the 

shared memory. Specifically, selecting the primary 

test, as well as computing the pair-wise 

compatibilities with the remaining tests in TPF, 

inherently involves memory contention since all 

cores are searching TPF. This issue is addressed by 

dynamically partitioning TPF in n private subsets 

(n being then number of available cores), one for 

each core. Each core can only select tests from its 

own private subset of TPF (and the corresponding 

DPF) which can be safely moved to its own private 

cache. This implicitly minimizes concurrent 

memoryaccess requests from different cores that 

can result ininefficient memory utilization due to 

memory contention. Moreover, it implicitly 

minimizes duplication of work as each core 

considers a distinct part in TPF. When a core 

finishes with themerging process within its private 

part of TPF, it is allowed to work on the entire set 

in order to ensure workloadbalancing by avoiding 

idle periods in cores. At this point, concurrent 

memory accesses can occur, however, their impact 

is minimal as the bulk of the merging process has 

alreadyoccurred during the private consideration, 

and, hence, the size of TPF is by this point 

significantly reduced. 

Test Provisional Marking 

During compatibility merging, the list Pi which 

holds pair-wise compatibilities between 

testsrequires updating after each merging. This 

updating is highly demanding in processing 

resources as it is of cubic complexity in the worst 

case. To avoid this issue the proposed methodology 

calculates and ranks compatibilities only once for 

each test ti. If a test tj is selected to be merged with 

ti, it is provisionally marked in TPF so that it is not 

merged in anothercore, explicitlyavoiding imposing 

unnecessary constraints inanother thread that 

performsmerging. If compatibility between ti and a 

test tj in Pi is invalidated by a previous merging, 

merging between ti and tj is not completed and 

theprovisional marking is cleared. Otherwise, 

provisional marking indicates permanent discarding 

of tj from TPF.    

  

Balanced Workload Distribution: 

Distribution of workload to the available 

cores can significantly impact the speed-up of a 

parallel methodology. Test generation and fault 

simulation processes have unpredictable execution 

times due to the nature of the problems and fault 
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dropping. Core idle time is minimized by 

dynamically selecting:’ 

  (i)The next fault to be targeted in seed-based test 

generation in each epoch. 

 (ii) The next test to be used as primary in test 

merging. 

 (iii) The tests to be merged with the primary test 

seed, and 

 (iv) The next fault to be targeted in restricted TG 

based on necessary assignments. Since, data is 

stored in shared memory (fault list and test seeds), 

and thus, is easily accessible by all cores, provides a 

punctual way ofdetermining how the workload will 

be selected at each stepand by each optimization 

mechanism of the approximation. 

Simulation results 

 
Fig.6.Simulated output 

 

 
Fig.7.RTL schematic of proposed method 

 
Fig.8.Technology schematic of proposed method 

CONCLUSION 

Proposed a parallel test pattern methodology 

for shared memory multi-core environments. A 

number of newly proposed heuristics attempt to 

avoid assigning the same workload to multiple 

cores, while the distribution of work in the available 

resources to minimize core idle time. Experimental 

results demonstrate high speed-up rates that keep 

increasing as the number of the available cores 

increases. Test set size increase is limited and 

comparable to other state-of-the-art parallel 

approaches. 
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